12 August 2015

PUBLICATION: Molecular mechanisms of desiccation stress response in plants


PUB22 and PUB23 U-BOX E3 ligases directly ubiquitinate RPN6, a 26S proteasome lid subunit, for subsequent degradation in Arabidopsis thaliana.

Cho, S.K., Bae, H., Ryu, M.Y., Yang, S.W. and Kim, W.T. Biochem Biophys Res Commun. doi:10.1016/j.bbrc.2015.07.030 (2015) E pub ahead of print

Read the full article here

Drought stress strongly affects plant growth and development, directly connected with crop yields, accordingly. However, related to the function of U-BOX E3 ligases, the underlying molecular mechanisms of desiccation stress response in plants are still largely unknown. Here we report that PUB22 and PUB23, two U-box E3 ligase homologs, tether ubiquitins to 19S proteasome regulatory particle (RP) subunit RPN6, leading to its degradation. RPN6 was identified as an interacting substrate of PUB22 by yeast two-hybrid screening, and in vitro pull-down assay confirmed that RPN6 interacts not only with PUB22, but also with PUB23. Both PUB22 and PUB23 were able to conjugate ubiquitins on RPN6 in vitro. Furthermore, RPN6 showed a shorter protein half-life in PUB22 overexpressing plants than in wild-type, besides RPN6 was significantly stabilized in pub22pub23 double knockout plants. Taken together, these results solidify a notion that PUB22 and PUB23 can alter the activity of 26S proteasome in response to drought stress.