Jesper Nygård – University of Copenhagen

Jesper Nygård


Nanophysics Group
Niels Bohr Institute
Faculty of Science

Jesper Nygård's primary research areas are within solid state physics and nanophysics. We explore quantum effects in semiconductor nanostructures, focusing on devices for nanoelectronics, novel biosensors and quantum information processing.

The work is based on advanced nanofabrication, electrical measurements, and experiments at ultralow temperatures. Devices are typically based on unconventional materials such as carbon nanotubes, graphene and semiconductor nanowires. Our group hosts a cleanroom with a suite of nanofabrication tools, including molecular beam epitaxy, electron microscopes and electron beam lithography systems.

In the field of bionanoelectronics, we develop semiconductor biosensors in collaboration with the Nanobiotechnology group and within the UNIK Synthetic Biology project. Examples are nanowire field-effect sensors for pH and protein sensing and nanowire arrays for probing of individual cells based on fluorescent techniques or electrical probing.

This work may lead to a variety of future applications such as integrated nanoelectronics, sensor technology, spintronics, qubits for quantum computing, sources of entangled electrons for quantum information, and photovoltaics. The group has spun out three startup companies.

Figure: Cross-section of biochip with electrically contacted nanowire probes


2012-present Professor MSO at the Niels Bohr Institute,University of Copenhagen, Co-founder of Center for Quantum Devices, University of Copenhagen
2010-2011 Director of the Nano-Science Center, Copenhagen
2008-present Vicechairman of the Nano-Science Center, Copenhagen
2007-present: Head of the nanophysics section, Niels Bohr Institute
2003-2012 Associate professor at the Niels Bohr Institute,University of Copenhagen 
2000 Ph.D. in experimental nanophysics (electron transport in carbon nanotubes) from Niels Bohr Institute, University of Copenhagen.
1996 MSc degree in physics and BSc in mathematics, also from University of Copenhagen.


Extended stays at Harvard University (US), Berkeley (US), Centre National de la Recherche Scientifique,Grenoble(France)

Co-founder of Hytronics A/S, Hafnia Nano Holding Aps, inXell bionics Aps

Appointed by the Minister of Research as an official Danish astronaut candidate (ESA) 2005-08.

Member of the Danish Natural Science Academy

Collaborations within the Center for Synthetic Biology
Karen Martinez
Tom Vosch
Bo Wegge Laursen
Jan H. Jensen

Selected Scientific Publiactions

Frederiksen, R., Alarcon-Llado, E., Madsen, M.H., Rostgaard, K.R., Krogstrup, P., Vosch, T., Nygård, J., Fontcuberta i Morral, A. & Martinez, K.L. Modulation of fluorescence signals from biomolecules along nanowires due to interaction of light with oriented nanostructures Nanoletters  15 (1), 176- 181doi: 10.1021/nl503344y (2015)

Buch-Månson, N., Bonde, S., Bolinsson, J., Berthing, T., Nygård, J. and Martinez, K.L. Towards a Better Prediction of Cell Settling on Nanostructure Arrays—Simple Means to Complicated Ends Advanced Functional Material in press doi: 10.1002/adfm.201500399 (2015)

Della Pia, E. A., Holm, J.V., Lloret, N., Le Bon, C., Popot, J.-L., Zoonens, M., Nygård, J., and Martinez, K.L. A Step Closer to Membrane Protein Multiplexed Nanoarrays Using Biotin-Doped Polypyrrole. Acs Nano 8, 1844-1853, doi:10.1021/nn406252h (2014).

Krogstrup, P., Jørgensen, H.I., Heiss, M., Demichel, O., Holm, J.V., Aagesen, M., Nygård, J., and Fontcuberta i Morral, A. Single-nanowire solar cells beyond the Shockley-Queisser limit. Nature Photonics 7, 306-310, doi:10.1038/nphoton.2013.32 (2013).

Li, T. Jevric, M., Hauptmann, J.R., Hviid, R., Wei, Z., Wang, R., Reeler, N.E.A., Thyrhaug, E., Petersen, S., Meyer, J.A.S., Bovet, N., Vosch, T., Nygård, J., Qiu, X., Hu, W., Liu, Y., Solomon, G. C., Kjaergaard, H. G., Bjornholm, T., Nielsen, M. B., Laursen, B. W. Norgaard, K. Ultrathin Reduced Graphene Oxide Films as Transparent Top-Contacts for Light Switchable Solid-State Molecular Junctions. Adv. Materials 25, 4164-4170, doi:10.1002/adma.201300607 (2013).

Chen, Y. Z. Bovet, N., Trier, F., Christensen, D.V., Qu, F.M., Andersen, N.H., Kasama, T., Zhang, W., Giraud, R., Dufouleur, J., Jespersen, T. S., Sun, J. R., Smith, A., Nygård, J., Lu, L., Buechner, B., Shen, B. G., Linderoth, S., Pryds, N. A high-mobility two-dimensional electron gas at the spinel/perovskite interface of gamma-Al2O3/SrTiO3.  Nature Communications 4, doi:10.1038/ncomms2394(2013).

Holm, J. V. , Jørgensen, H.I., Krogstrup, P., Nygård, J., Liu, H., and Aagesen, M. Surface-passivated GaAsP single-nanowire solar cells exceeding 10% efficiency grown on silicon. Nature Communications 4, doi:10.1038/ncomms2510(2013).

Fan, P., Colombo, C., Huang, K.C.Y., Krogstrup, P., Nygård, J., Fontcuberta i Morral, A., and Brongersma, M.L. An Electrically-Driven GaAs Nanowire Surface Plasmon Source. Nano Letters 12, 4943-4947, doi:10.1021/nl302521v(2012).

Nissen, P. D., Jespersen, T.S., Grove-Rasmussen, K., Marton, A., Upadhyay, S., Madsen, M.H., Csonka, S., and Nygård, J. Comparison of gate geometries for tunable, local barriers in InAs nanowires. Journal of Applied Physics 112, doi:10.1063/1.4759248(2012).

Krogstrup, P., Popovitz-Biro, R., Johnson, E., Madsen, M.H., Nygård, J., and Shtrikman, H. Structural Phase Control in Self-Catalyzed Growth of GaAs Nanowires on Silicon(111). Nano Letters 10, 4475-4482, doi:10.1021/nl102308k (2010).